从 Tesla AI Day 的 Tesla Vision 方案窥见自动驾驶感知模块的进展
现实世界往往不能通过简单的 2D 图像去近似,最直观的想法就是加维度。时间上加维度就是视频,空间上再加维度就是 3D 数据例如点云,在其他属性上加维度就是多模态。真实场景遇到的数据是会更具挑战性的。而自动驾驶就是这样的典型场景,下面通过 Tesla AI Day 的 Tesla Vision 部分去介绍一下 Tesla 自动驾驶的感知方案。
现实世界往往不能通过简单的 2D 图像去近似,最直观的想法就是加维度。时间上加维度就是视频,空间上再加维度就是 3D 数据例如点云,在其他属性上加维度就是多模态。真实场景遇到的数据是会更具挑战性的。而自动驾驶就是这样的典型场景,下面通过 Tesla AI Day 的 Tesla Vision 部分去介绍一下 Tesla 自动驾驶的感知方案。
该篇文章大概记录了我在 Datawhale 的“实际工作中数据和模型的价值"的相关分享。
希望今后能够多研究 kaggle 的目标检测竞赛方案,在精(排)益(列)求(组)精(合)的路上越来越顺利,越来越有自己的想法。
第一次写竞赛记录,希望能够在赛后完善自己的分析流程,并学习他人的方案进行反思。
高质量C++编程指南(林锐)阅读笔记
在深度学习中,数据十分重要。在我们构造的网络较为庞大的情况下,相当于我们需要从假设空间中以数据驱动的方式学出一种相应的参数组。而网络越宽越深越复杂,往往其参数越多,所以我们需要更多的数据去逼近一个可用解,在本节中,我大致介绍一下我们能够为数据做点什么
写这篇文章的初衷是希望在众多的开源baseline中,我想要形成我自己的一套pipeline。所以我将在近期的几个竞赛中开始尝试并逐渐整理出一套简洁易用的pipeline
用VSCode编写C++/Python所需要的配置,推荐了一些VSCode插件,记录了如何使用Setting Sync云同步插件及配置